Direct contact versus solvent-shared ion pairs in NiCl2 electrolytes monitored by multiplet effects at Ni(II) L edge X-ray absorption.
نویسندگان
چکیده
We investigate the local electronic structure in aqueous NiCl2 electrolytes by Ni L edge X-ray absorption spectroscopy. The experimental findings are interpreted in conjunction with multiplet calculations of the electronic structure and the resulting spectral shape. In contrast to the situation in the solid, the electronic structure in the electrolyte reflects the absence of direct contact Ni-Cl ion pairs. We observe a systematic change of the intensity ratio of singlet- and triplet-related spectral features as a function of electrolyte concentration. These changes can be described theoretically by a change in the weight of transition matrix contributions with different symmetries. We interpret these findings as being due to progressive distortions of the local symmetry induced by solvent-shared ion pairs.
منابع مشابه
Thermodynamic Modeling of Poorly Complexing Metals in Concentrated Electrolyte Solutions: An X-Ray Absorption and UV-Vis Spectroscopic Study of Ni(II) in the NiCl2-MgCl2-H2O System
Knowledge of the structure and speciation of aqueous Ni(II)-chloride complexes is important for understanding Ni behavior in hydrometallurgical extraction. The effect of concentration on the first-shell structure of Ni(II) in aqueous NiCl2 and NiCl2-MgCl2 solutions was investigated by Ni K edge X-ray absorption (XAS) and UV-Vis spectroscopy at ambient conditions. Both techniques show that no la...
متن کاملAb Initio Calculations of X-ray Spectra: Atomic Multiplet and Molecular Orbital Effects in a Multiconfigurational SCF Approach to the L-Edge Spectra of Transition Metal Complexes.
A new ab initio approach to the calculation of X-ray spectra is demonstrated. It combines a high-level quantum chemical description of the chemical interactions and local atomic multiplet effects. We show here calculated L-edge X-ray absorption (XA) and resonant inelastic X-ray scattering spectra for aqueous Ni(2+) and XA spectra for a polypyridyl iron complex. Our quantum chemical calculations...
متن کاملAdsorption destructive study of Chlorpyrifos (CP) on the Nickel Tungstate (NiWO4) nanoparticles catalyst by 31PNMR
In this research, the adsorption destructive process of chlorpyrifos (CP,O,O-Diethyl-O-3,5,6-trichloro-2-pyridinyl phosphorothioate) as a noticeable organophosphate pesticide using in agriculture on the nickel tungstate (NiWO4) nanoparticles catalyst was investigated and monitored via the 31P nuclear magnetic resonance (31PNMR). The effects of various experimental parameters such as catalyst do...
متن کاملAdsorption destructive study of Chlorpyrifos (CP) on the Nickel Tungstate (NiWO4) nanoparticles catalyst by 31PNMR
In this research, the adsorption destructive process of chlorpyrifos (CP,O,O-Diethyl-O-3,5,6-trichloro-2-pyridinyl phosphorothioate) as a noticeable organophosphate pesticide using in agriculture on the nickel tungstate (NiWO4) nanoparticles catalyst was investigated and monitored via the 31P nuclear magnetic resonance (31PNMR). The effects of various experimental parameters such as catalyst do...
متن کاملFluorescence-detected X-ray magnetic circular dichroism of well-defined Mn(II) and Ni(II) doped in MgO crystals: credential evaluation for measurements on biological samples.
L(2,3)-edge X-ray magnetic circular dichroism (XMCD) spectra have been measured for the well-defined dilute Ni(II) and Mn(II) ions doped into a MgO crystal, with sub-Kelvin dilution refrigerator cooling and 2 T magnetic field magnetization. A 30-element Ge array X-ray detector has been used to measure the XMCD for these dilute ions, whose concentrations are 1400 ppm for Ni(II) and 10,000 ppm fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 111 17 شماره
صفحات -
تاریخ انتشار 2007